Time-resolved gas-phase kinetic studies of the reaction of dimethylsilylene with triethylsilane-1-d: kinetic isotope effect for the Si-H insertion process.
نویسندگان
چکیده
Time-resolved kinetic studies of the reaction of dimethylsilylene, SiMe2, generated by laser flash photolysis of 1,1-dimethyl-1-silacyclopent-3-ene, have been carried out to obtain rate coefficients for its bimolecular reactions with trimethylsilane-1-d, Me3SiD. The reaction was studied in the gas phase at five temperatures in the range 292-605 K. The rate coefficients showed no pressure dependence in the presence of up to 13 kPa of SF6. The second order rate coefficients obtained at 0.7 kPa fitted the Arrhenius equation: log(k/cm(3) molecule(-1) s(-1)) = (-13.53 ± 0.19) + (11.29 ± 1.46) kJ mol(-1)/RT ln 10. By comparison with rate coefficients obtained previously for the reaction of SiMe2 with Me3SiH, a set of kinetic isotope effects, kH/kD, of value ca. 1.2 showing very little temperature dependence was obtained. Theoretical support for these values has been obtained by means of quantum chemical calculations used in conjunction with transition state theory. This study provides the first comprehensive set of kinetic isotope effects for the Si-H(D) insertion process of a silylene in the gas phase.
منابع مشابه
A dramatic isotope effect in the reaction of ClSiH with trimethylsilane-1-d: experimental evidence for intermediate complexes in silylene Si-H(D) insertion reactions
A kinetic isotope effect (kD/kH) of 7.4 has been found for the reaction of chlorosilylene with trimethysilane (Me3SiD vs Me3SiH). Such a value can be accounted for by theoretical modelling, but only if an internal rearrangement of the initially form complex is included in the mechanism. This provides the first concrete evidence for such complexes. The insertion reaction of silylenes into Si-H b...
متن کاملKinetic and thermodynamic study of substituent effect on the Claisen rearrangement of para-substituted SI aryl ether: a Hammett study via DFT
In order to find the susceptibility of the Claisen rearrangement and next proton shift reaction of ally) aryl etherto the substiment effects in pan position, the kinetic and the:rmodynamie parameters are calculated at The33 LTP level using 6-3110. b asis set. The calculated activation energies for the rearrangements and protonshift reactions are around 3133 kcaUmol and 52.16 kcal/mol, nap.. liv...
متن کاملKINETIC STUDY OF SYNTHESIS OF TITANIUM CARBIDE BY METHANOTHERMALREDUCTION OFTITANIUM DIOXIDE
Abstract: Reduction of the Titanium dioxide, TiO2, by methane was investigated in this work. The thermodynamic of reaction was examined and found favorable. The reaction of titanium dioxide with methane was carried out in the temperature range 1150°C to 1450°C at atmospheric pressure with industrial high porosity pellets prepared from titanium dioxide powder. The evolved gas analyzing method wa...
متن کاملHydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst
The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...
متن کاملHydrogen generation from hydrolysis of sodium borohydride using sulfonated porous carbon as reagent/catalyst
The hydrolysis of sodium borohydride as a source of hydrogen gas is studied at different mole ratios of H+ to NaBH4. The sulfonated porous carbon (SPC) is used as a source of hydrogen ion and catalyst. It is found that the sulfonated porous carbon exhibits high activity for the hydrolysis of NaBH4 to generate hydrogen gas at room temperature in comparison to Amberlyst-15 and Nafion-NR50. The ki...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 15 15 شماره
صفحات -
تاریخ انتشار 2013